Constitutive model for shape memory polymer and its thermodynamic responses in finite element analysis

Author:

Wu Jianlei123,Guo Jing245,Luo Yong3,Sun Jianfeng245,Xu Liangwei1,Zhang Jianxing6,Liu Yunfeng7

Affiliation:

1. Intelligent Equipment Research Institute, Ningbo Polytechnic, Ningbo, Zhejiang, China

2. Department of Orthodontics, Ningbo Stomatology Hospital, Ningbo, Zhejiang, China

3. School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, Jiangsu, China

4. Savaid Stomatology School, Hangzhou Medical College, Hangzhou, Zhejiang, China

5. Savaid Medical Institute for Stomatology and ENT, Ningbo, Zhejiang, China

6. Department of Stomatology, Zhejiang Hospital, Hangzhou, Zhejiang, China

7. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China

Abstract

BACKGROUND: As a new intelligent polymer material, shape memory polymer (SMP) was a potential orthodontic appliance material. OBJECTIVE: This study aimed to investigate the thermodynamic responses of SMP under different loads via finite element analysis (FEA). METHODS: FEA specimens with a specification of 0.1 × 0.1 × 1 mm were designed. One end of the specimen was fixed, and the other was subjected to displacement load. Different loading, cooling, and heating rates were separately exerted on the specimen in its shape recovery process and used to observe the responses of the SMP constitutive model. Furthermore, specimens with various tensile elongation and sectional areas were simulated and used to elucidate their effect on shape recovering force. RESULTS: The specimens obtained a similar stress of 0.5, 0.44, and 1.07 Mpa for different loading, cooling, and heating rates after a long time. The shape recovering force of specimen increased from 0.0102 to 0.0315 N when the elongation improved from 10% to 40% and to 0.0408 N when the sectional areas were expanded to 0.2 × 0.2 mm. CONCLUSION: The stiffness of SMP was small at a high temperature but large at a low temperature. The effects of the loading, cooling, and heating rates on SMP can be eliminated after a long time. Furthermore, it was possible to increase the recovering force by increasing the elongation or expanding the sectional area of the specimen. The force was quadratically dependent on the elongation ratio.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3