Hybrid Machine Learning Approach for Early Diagnosis of Polycystic Ovary Syndrome with Stable Features

Author:

Reka S1,Karthik Sainadh Reddy Dwarampudi1,Dhiraj Inti1,Suriya Praba T1

Affiliation:

1. School of Computing, SASTRA Deemed University, Thirumalasaisamudram, Thanjavur, Tamil Nadu, India

Abstract

Polycystic Ovary Syndrome (PCOS) is a hormonal condition that typically affects female during the time of their reproduction. It is identified by the disruptions in hormonal balance, particularly an increase in levels of androgen (male hormone) in the female body. PCOS can lead to various symptoms and health complications including irregular menstrual cycles, ovarian cysts, fertility issues, insulin resistance, weight gain, acne, and excess hair growth. The real-world PCOS detection is a challenging task whilst PCOS specific cause is unknown and its symptoms are unclear. Thus, accurate and timely diagnosis of PCOS is crucial for effective management and prevention of long-term complications. In such cases, Machine learning based PCOS prediction model support diagnostic process, address potential errors and time constraints. Machine learning algorithms can analyze large set of patient data, including medical history, hormonal profiles, and imaging results, to assist in the diagnosis of PCOS. In particular, the performance of data analysis chore and prediction model is improved by ensemble feature selection strategies. These methods concentrate on selecting a subset of pertinent features from a broader range of features. The unstable nature of the outcome of feature selection algorithm is a frequent issue in practical applications, when it is applied multiple times on similar dataset or with slight modifications in the data. Thus, evaluating the robustness of feature selection algorithm is most important. To address these issues and quantify the robustness, this study uses Jenson-Shannon divergence, an information theoretic approach with ensemble feature selection method to handle the various findings, such as complete ranking, half ranking and top-k lists (without ranking). Furthermore, this article proposes a hybrid machine learning classifier with SMOTE – SVM for the prompt detection of PCOS and the performance of the model is compared with a number of other individual classifiers including KNN (K-Nearest Neighbour), Support Vector Machine (SVM), AdaBoost, LR –Logistic Regression, NB –Nave Bayes, RF –Random Forest, Decision Tree. The proposed SWISS-AdaBoost classifier surpassed other models with 97.81% of accuracy and AUC of 99.08%.

Publisher

IOS Press

Reference1 articles.

1. Modelling of F3I based feature selection approach for PCOS classification and prediction;Maheswari;Journal of Ambient Intelligence and Humanized Computing,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3