Creation of a diverse mixed-lingual emotional speech corpus with a framework for enhanced emotion detection

Author:

Lalitha S.1,Sridevi N.1,Deekshitha Devarasetty1,Gupta Deepa2,Alotaibi Yousef A.3,Zakariah Mohammed3

Affiliation:

1. Department of Electronics and Communication Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India

2. Department of Computer Science and Engineering, Amrita School of Computing, Bengaluru, Amrita Vishwa Vidyapeetham, India

3. Department of Computer and Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia

Abstract

Speech Emotion Recognition (SER) has advanced considerably during the past 20 years. Till date, various SER systems have been developed for monolingual, multilingual and cross corpus contexts. However, in a country like India where numerous languages are spoken and often humans converse in more than one language, a dedicated SER system for mixed-lingual scenario is more crucial to be established which is the focus of this work. A self-recorded database that includes speech emotion samples with 11 diverse Indian languages has been developed. In parallel, a mixed-lingual database is formed with three popular standard databases of Berlin, Baum and SAVEE to represent mixed-lingual environment for western background. A detailed investigation of GeMAPS (Geneva Minimalistic Acoustic Parameter Set) feature set for mixed-lingual SER is performed. A distinct set of MFCC (Mel Frequency Cepstral Coefficients) coefficients derived from sine and cosine-based filter banks enriches the GeMAPS feature set and are proven to be robust for mixed-lingual emotion recognition. Various Machine Learning (ML) and Deep Learning (DL) algorithms have been applied for emotion recognition. The experimental results demonstrate GeMAPS features classified from ML has been quite robust for recognizing all the emotions across the mixed-lingual database of the western languages. However, with diverse recording conditions and languages of the Indian self-recorded database the GeMAPS with enriched features and classified using DL are proven to be significant for mixed-lingual emotion recognition.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3