Affiliation:
1. Department of Electronics and Communication Engineering, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
Abstract
Sentiment analysis is a method of analyzing emotions and using text analysis techniques with natural language processing methods. Sentiment analysis uses data from various sources to identify the user’s attitude through different aspects. It is widely used for extracting opinions and recognizing sentiments, which helps Business organizations understand the user’s needs. This paper proposes a simple but compelling sentiment analysis method, showing the combined scores based on positive and negative words. Then, the tweets are categorized as Neutral, Negative, or Positive according to the scores. Sentiment analysis and opinion mining have grown significantly in the last decade. Different studies in this domain try to determine people’s feelings, opinions, and emotions about something or someone. The main objective of this analysis is to determine the sentiment of the review using a machine learning model and then compare the result with the manual review of the data. This would allow researchers to represent and analyze opinions objectively across different domains. A hybrid method that combines a supervised machine learning algorithm with natural language processing techniques is suggested for review analysis. This project aims to find the best model to predict the sentiment of the tweets on airlines. During the research process and considering various methods and variables that should be considered, we found that methods like naïve Bayes and random forest were not fully explored. The proposed system improves an effective and more feasible method for sentimental analysis using machine learning, multinomialNB, linear regression, and regular expression.