Improved approach to wave potential estimation using bivariate distributions

Author:

Guzmán-Cabrera Rafael1,Hernández-Robles Iván A.1,Ramírez Xiomara González1,Sepúlveda José Rafael Guzmán2

Affiliation:

1. Departamento de Ingeniería Electrica, Universidad de Guanajuato, Campus Irapuato-Salamanca. km 3.5 + 1.8carretera Salamanca-Valle de Santiago, Salamanca, Guanajuato, 36730, México

2. Centro de Investigación y deEstudios Avanzados del IPN, Unidad Monterrey. Parque deInvestigación e Innovación Tecnológica, km 9.5 de laAutopista Nueva al Aeropuerto. Apodaca, Nuevo León, 66600, México

Abstract

Probabilistic approaches are frequently used to describe irregular activity data to assist the design and development of devices. Unfortunately, useful estimations are not always feasible due to the large noise in the data modeled, as it occurs when estimating the sea waves potential for electricity generation. In this work we propose a simple methodology based on the use of joint probability models that allow discriminating extreme values, collected from measurements as pairs of independent points, while allowing the preservation of the essential statistics of the measurements. The outcome of the proposed methodology is an equivalent data series where large-amplitude fluctuations are suppressed and, therefore, can be used for design purposes. For the evaluation of the proposed method, we used year-long databases of hourly-collected measurements of the wave’s height and period, performed at maritime buoys located in the Gulf of Mexico. These measurements are used to obtain a fluctuations-reduced representation of the energy potential of the waves that can be useful, for instance, for the design of electric generators.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference17 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3