Single image dehazing using attention layers in convolutional neural networks

Author:

Rao Vishisht Srihari1,Vinay P.1,Uma D.1

Affiliation:

1. Department of Computer Science and Engineering, PES University, Bengaluru, India

Abstract

A hazy image is characterized by atmospheric conditions that reduce the image’s clarity and contrast, thereby making it less visible. This degradation in image quality can hinder the performance of advanced computer vision tasks such as object detection and identifying open spaces which need to perform with high accuracy in important real world applications such as security surveillance and autonomous driving. In the recent past, the use of deep learning in image processing tasks have shown a remarkable improvement in performance, in particular, Convolutional Neural Networks (CNNs) perform superior to any other type of neural network in image related tasks. In this paper, we propose the addition of Channel Attention and Pixel Attention layers to four state-of-the-art CNNs, namely, GMAN, U-Net, 123-CEDH and DMPHN, used for the task of image dehazing. We show that the addition of these layers yields a non-trivial improvement on the quality of the dehazed images which we show qualitatively with examples and quantitatively by obtaining PSNR and SSIM scores of 28.63 and 0.959 respectively. Through the experiments, we show that the addition of the mentioned attention layers to the GMAN architecture yields the best results.

Publisher

IOS Press

Reference10 articles.

1. Single image haze removal using darkchannel prior;He;IEEE Transactions on Pattern Analysis andMachine Intelligence,2010

2. Single image dehazing withdepth-aware non-local total variation regularization;Liu;IEEETransactions on Image Processing,2018

3. Learningaggregated transmission propagation networks for haze removal andbeyond;Liu;IEEE Transactions on Neural Networks and LearningSystems,2018

4. A review on generativeadversarial networks: Algorithms, theory, and applications;Gui;IEEE Transactions on Knowledge and Data Engineering,2021

5. Joint transmission mapestimation and dehazing using deep networks;Zhang;IEEE Transactionson Circuits and Systems for Video Technology,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3