A machine learning-based weather prediction model and its application on smart irrigation

Author:

Khalifeh Ala’ F.1,AlQammaz Abdullah Y.1,Abualigah Laith23,Khasawneh Ahmad M.4,Darabkh Khalid A.4

Affiliation:

1. Electrical Engineering Department, German Jordanian University, Amman, Jordan

2. Faculty of Computer Sciences and Informatics, Amman Arab University, Amman, Jordan

3. School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia

4. Information Technology Department, Amman Arab University, Amman, Jordan

Abstract

Weather prediction is paramount for many applications and scenarios, among them is agriculture. In order to efficiently irrigate the crops with the exact needed water amount, weather forecasting can be used to optimize the quantity of required irrigation water such that the crops are neither dried up nor over-irrigated. This paper proposes a Machine Learning (ML)-based weather forecasting model, which utilizes the Social Spider Algorithm-Least Square-Support Vector Machine (SSA-LS-SVM) algorithm. The simulation results are used to predict the prime weather and soil parameters such as the atmospheric temperature, pressure, and soil humidity for 24, 48, and 72 hours based on previous 39 days’ hourly data for Amman city. The predicted values showed low relative mean square errors compared with the actual values and the LS-SVM predictor.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference12 articles.

1. An effective weather forecasting using neural networks;Singh;International Journal of Emerging Engineering Research and Technology,2014

2. FAO, World Agriculture: Towards 2015/2030—An FAO Perspective; Earthscan Publications Ltd.: London, Uk, 2014.

3. Ancha Srinivasan (ed), Handbook of precision agriculture, Principles and applications;Haverkort;Euphytica,2007

4. Smart & green: An internet-of-things framework for smart irrigation;GS Campos;Sensors,2020

5. A survey on intelligent agricultural information handling methodologies;Voutos;Sustainability,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3