Algorithmic music generation by harmony recombination with genetic algorithm

Author:

Lopez-Rincon Omar1,Starostenko Oleg1,Lopez-Rincon Alejandro2

Affiliation:

1. Department of Computing, Electronics, and Mechatronics, Universidad de las Americas Puebla, Cholula, Mexico

2. Utrecht University Pharmaceutical Sciences Pharmacology, Netherland

Abstract

Algorithmic music composition has recently become an area of prestigious research in projects such as Google’s Magenta, Aiva, and Sony’s CSL Lab aiming to increase the composers’ tools for creativity. There are advances in systems for music feature extraction and generation of harmonies with short-time and long-time patterns of music style, genre, and motif. However, there are still challenges in the creation of poly-instrumental and polyphonic music, pieces become repetitive and sometimes these systems copy the original files. The main contribution of this paper is related to the improvement of generating new non-plagiary harmonic developments constructed from the symbolic abstraction from MIDI music non-labeled data with controlled selection of rhythmic features based on evolutionary techniques. Particularly, a novel approach for generating new music compositions by replacing existing harmony descriptors in a MIDI file with new harmonic features from another MIDI file selected by a genetic algorithm. This allows combining newly created harmony with a rhythm of another composition guaranteeing the adjustment of a new music piece to a distinctive genre with regularity and consistency. The performance of the proposed approach has been assessed using artificial intelligent computational tests, which assure goodness of the extracted features and shows its quality and competitiveness.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3