Low complex CNN for semiconductor wafer defect detection

Author:

Midula P.1,Shine Linu2,George Neetha1

Affiliation:

1. Department of Electronics and Communication, RajivGandhi Institute of Technology, Kottayam, Kerala, India

2. Department of Electronics and Communication, College of Engineering, Trivandrum, Kerala, India

Abstract

Fabrication of semiconductor wafers is a complex process and chances of defect wafers are high. Because of defective wafers the circuit patterns will not be created correctly and it is necessary to identify them. Manual identification of defects are time consuming and expensive. Deep learning methods are widely used for defect detection. In this paper we propose a simple Convolutional Neural Network (CNN) model for classification of nine defects in wafers. A custom CNN consisting of 9 layers is used for the classification of defects as Center, Donut, Edge-Loc, Edge-Ring, Loc, Random, Scratch, Near-full, and None. Performance of the model is evaluated using WM-811K dataset. Results shows that the model classifies the defects with high confidence score and an accuracy of 99.1% is achieved using this method. Further, the convolution operation in the CNN is realized using Coordinate Rotation Digital Computer (CORDIC) algorithm. The model is implemented in Field Programmable Gate Arrays (FPGA) and proved less complex method and consume less computational power than conventional methods.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3