Application of fuzzy sliding mode control method based on cyber-physics fusion system in mechanical resonance suppression

Author:

Guo Zhiyan1,Xia Jiakuan1,Li Zexing1

Affiliation:

1. School of Electrical Engineering, Shenyang University of Technology, Shenyang, Liaoning, China

Abstract

Modern high-end digital manufacturing has continuously improved the performance requirements for servo drive systems. High-performance servo drive systems should have excellent dynamic performance and steady-state performance. At present, an AC permanent magnet servo drive system using a permanent magnet synchronous motor as the drive motor has become the mainstream of contemporary servo drive systems. Servo system (servo mechanism), also known as servo systems, generally contains feedback control links, mainly used to accurately follow or reproduce a certain process. The servo system is mainly composed of a controller, a power drive device, a feedback device, a transmission device, a motor, and a load. In a servo system, the existence of mechanical resonance will cause serious damage to the transmission mechanism of the system and will reduce the reliability and accuracy of the system. When the performance of the system deteriorates severely, it will lead to system instability or even safety accidents. This article aims to study the use of fuzzy sliding mode control methods to control the generation of mechanical resonance, to further eliminate the phenomenon of mechanical resonance in the servo system. This paper puts forward the methods to eliminate chattering generated by sliding mode control, mainly including filtering method, eliminating uncertainty, intelligent algorithm optimization, reducing switching gain, and fan shape. The experimental results in this paper show that when the angular speed feedback of the motor is adopted, the maximum value of the speed difference is close to 3rad/s. It can be considered that there is resonance in the system, and the load resonance is the main factor. When the angular velocity feedback at the load end is used, the maximum value of the speed difference is about 0.05rad/s, and it can be considered that the resonance has been successfully suppressed.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference17 articles.

1. Two Approaches to Speed Control for Multi-Mass System with Variable Mechanical Parameters;Brock;IEEE Transactions on Industrial Electronics,2017

2. A Novel Cross-Feedback Notch Filter for Synchronous Vibration Suppression of an MSFW with Significant Gyroscopic Effects;Cong;IEEE Transactions on Industrial Electronics,2017

3. Mechanical vibration reduction control of two-mass permanent magnet synchronous motor using adaptive notch filter with fast Fourier transform analysis;Lee;Electric Power Applications Iet,2012

4. Online suppression of mechanical resonance based on adapting notch filter;Ming;Journal of Harbin Institute of Technology,2014

5. Analysis and Damping of Mechanical Resonance of Wind Power Generators Contributing to Frequency Regulation;Arani;IEEE Transactions on Power Systems,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3