Communicative intention detection in Spanish tweets using Jakobson language functions

Author:

Valencia-Valencia Alex I.1,Gomez-Adorno Helena2,Stephens Rhodes Christopher3,Bel-Enguix Gemma45,Trueba Ojeda4,Fuentes Pineda Gibran2

Affiliation:

1. Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México

2. Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México

3. Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México

4. Instituto de Ingeniería, Universidad Nacional Autónoma de México

5. Departament de Filologia Catalana i Lingüística General, Universitat de Barcelona

Abstract

Social media platforms, such as Twitter (now X), are a major source of communication. Identifying communicative intentions is useful, as it encapsulates the latent motivations that drive text creation. This intention is also helpful in understanding the message, context, and audience. This study proposes a method for detecting communicative intentions in tweets using Jakobson’s language functions. We constructed a meticulously annotated dataset, drawing from the extensive RepLab2013 corpus. Our dataset underwent rigorous scrutiny by linguistic annotators who analyzed over 12,000 tweets individually. These experts identified the dominant language function within each tweet by employing diverse strategies to ensure precise labeling quality. The outcome demonstrated a noteworthy Kappa agreement score of 0.6, reflecting a strong inter-annotator reliability. Subsequently, these functions were mapped to the corresponding intention categories. We employed logistic regression and support vector machines (SVM) algorithms to classify intention in tweets and explored various pre-processing techniques, incorporating n-grams and bag-of-words representations. Furthermore, we expanded our research using pre-trained large language models, incorporating the latest state-of-the-art techniques in natural language processing.

Publisher

IOS Press

Reference7 articles.

1. La# felicidad en twitter: ?‘ quérepresenta realmente?;Gemma Bel-Enguix;Linguamatica,2022

2. Character and word baselines systems for irony detection in spanish short texts;Gabriela Jasso López;Procesamiento del Lenguaje Natural,2016

3. Functions of language and elements of poetry;Marius Narcis Manoliu;International Journal of Communication Research,2017

4. Analysis of twitter specificpreprocessing technique for tweets;Dharini Ramachandran;Procedia Computer Science,2019

5. A case studyof spanish text transformations for twitter sentiment analysis;Eric Tellez;Expert Systems with Applications,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3