Group Activity Recognition in Basketball Tracking Data – Neural Embeddings in Team Sports (NETS)

Author:

Hauri Sandro1,Vucetic Slobodan1

Affiliation:

1. Temple University

Abstract

Like many team sports, basketball involves two groups of players who engage in collaborative and adversarial activities to win a game. Players and teams are executing various complex strategies to gain an advantage over their opponents. Defining, identifying, and analyzing different types of activities is an important task in sports analytics, as it can lead to better strategies and decisions by the players and coaching staff. The objective of this paper is to automatically recognize basketball group activities from tracking data representing locations of players and the ball during a game. We propose a novel deep learning approach for group activity recognition (GAR) in team sports called NETS. To efficiently model the player relations in team sports, we combined a Transformer-based architecture with LSTM embedding, and a team-wise pooling layer to recognize the group activity. Training such a neural network generally requires a large amount of annotated data, which incurs high labeling cost. To alleviate this problem, we pretrain the neural network on a self-supervised trajectory prediction task and fine-tune it using a mix of strong and weak labels. We used a large tracking data set from 632 NBA games to evaluate our approach. The results show that NETS is capable of learning group activities with high accuracy, and that self- and weak-supervised training in NETS have a positive impact on GAR accuracy.

Publisher

IOS Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3