An improved YOLO network for unopened cotton boll detection in the field

Author:

Zhang Yan1,Yang Gongping12,Liu Yikun1,Wang Chong1,Yin Yilong1

Affiliation:

1. School of Software, Shandong University, Jinan, China

2. School of Computer, Heze University, Heze, China

Abstract

Detection of cotton bolls in the field environments is one of crucial techniques for many precision agriculture applications, including yield estimation, disease and pest recognition and automatic harvesting. Because of the complex conditions, such as different growth periods and occlusion among leaves and bolls, detection in the field environments is a task with considerable challenges. Despite this, the development of deep learning technologies have shown great potential to effectively solve this task. In this work, we propose an Improved YOLOv5 network to detect unopened cotton bolls in the field accurately and with lower cost, which combines DenseNet, attention mechanism and Bi-FPN. Besides, we modify the architecture of the network to get larger feature maps from shallower network layers to enhance the ability of detecting bolls due to the size of cotton boll is generally small. We collect image data of cotton in Aodu Farm in Xinjiang Province, China and establish a dataset containing 616 high-resolution images. The experiment results show that the proposed method is superior to the original YOLOv5 model and other methods such as YOLOv3,SSD and FasterRCNN considering the detection accuracy, computational cost, model size and speed at the same time. The detection of cotton boll can be further applied for different purposes such as yield prediction and identification of diseases and pests in earlier stage which can effectively help farmers take effective approaches in time and reduce the crop losses and therefore increase production.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3