Application of Internet of Things intelligent image-positioning studio classroom in English teaching

Author:

Chen Jie1,Chen Yukun2,Lin Jiaxin1

Affiliation:

1. School of Foreign Languagues, Guangdong University of Finance and Economics, Guangzhou 510655, China

2. School of Humanities, Nanyang Technological University, Singapore 639798, Singapore

Abstract

The purpose is to minimize color overflow and color patch generation in intelligent images and promote the application of the Internet of Things (IoT) intelligent image-positioning studio classroom in English teaching. Here, the Convolutional Neural Network (CNN) algorithm is introduced to extract and classify features for intelligent images. Then, the extracted features can position images in real-time. Afterward, the performance of the CNN algorithm is verified through training. Subsequently, two classes in senior high school are selected for experiments, and the influences of IoT intelligent image-positioning studio classroom on students’ performance in the experimental class and control class are analyzed and compared. The results show that the introduction of the CNN algorithm can optimize the intelligent image, accelerate the image classification, reduce color overflow, brighten edge color, and reduce color patches, facilitating intelligent image editing and dissemination. The feasibility analysis proves the effectiveness of the IoT intelligent image-positioning studio classroom, which is in line with students’ language learning rules and interests and can involve students in classroom activities and encourage self-learning. Meanwhile, interaction and cooperation can help students master learning strategies efficiently. The experimental class taught with the IoT intelligent positioning studio has made significant progress in academic performance, especially, in the post-test. In short, the CNN algorithm can promote IoT technologies and is feasible in English teaching.

Publisher

IOS Press

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference44 articles.

1. Improving indoor geomagnetic field fingerprinting using recurrence plot-based convolutional neural networks;Abid;Journal of Location-Based Services,2020

2. Integration of weather forecast and artificial intelligence for a short-term city-scale natural gas consumption prediction

3. Developing professional and entrepreneurship skills of engineering students through problem-based learning: A case study in Brazil;Araújo;International Journal of Engineering Education,2020

4. An intelligent IoT with a cloud-centric medical decision support system for chronic kidney disease prediction;Arulanthu;International Journal of Imaging Systems and Technology,2020

5. Development and external validation of a new convolutional neural networks algorithm derived artificial intelligence tool to predict malignancy in pulmonary nodules;Baldwin;Lung Cancer,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3