Design of filter coefficients for optimal factored truncated cascade FIR filter using optimization algorithm

Author:

Srivatsan K.1

Affiliation:

1. School of Electronics Engineering, Vellore Institute of Technology, Chennai, India. E-mail: srivatsan.k@vit.ac.in

Abstract

Signal filtering acts as one of the basic requirement of communication networks for the removal of unwanted features from the signal. The design of appropriate digital filter requires the selection of optimal filter coefficients for the generation of desired frequency response with reduced hardware complexity. This paper proposes a hybrid optimization algorithm named as Brain Storm- Grey Wolf Optimizer (BSGWO) algorithm for the selection of filter coefficients in the design of factored truncated cascade FIR filter. The proposed algorithm is the hybridization of the optimization algorithms, namely Brain Storm Optimization (BSO) and Grey Wolf Optimizer (GWO). The input signal is interpolated initially for the formation of an intermediate signal using the FIR filter. Then, the factored truncated cascade filter is developed for the interpolation of the signal. After designing the filter coefficients, the optimal selection of the filter coefficients is performed using the proposed BSGWO algorithm. The original filter is developed with the use of the least square estimation and the new filter is developed using the proposed algorithm that tunes the filter coefficients. The performance of the proposed system is analyzed using the metrics, such as fitness, Mean Absolute Error (MAE), magnitude, and the number of components. The proposed method produces minimum fitness, MAE, magnitude and number of components of 0.05, 0.0155, − 96.0  dB and 3372, respectively that shows the effectiveness of the proposed method.

Publisher

IOS Press

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3