Automatic Chinese knowledge-based question answering by the MGBA-LSTM-CNN model

Author:

Liu Wenyuan1,Fan Mingliang1,Feng Kai1,Guo Dingding1

Affiliation:

1. The Key Laboratory of Software Engineering of Hebei Province, School of Information Science and Engineering (School of Software), Yanshan University, Hebei, China

Abstract

The purpose of knowledge-based question answering (KBQA) is to accurately answer the questions raised by users through knowledge triples. Traditional Chinese KBQA methods rely heavily on artificial features, resulting in unsatisfactory QA results. To solve the above problems, this paper divides Chinese KBQA into two parts: entity extraction and attribute mapping. In the entity extraction stage, the improved Bi-LSTM-CNN-CRF model is used to identify the entity of questions and the Levenshtein distance method is used to resolve the entity link error. In the attribute mapping stage, according to the characteristics of questions and candidate attributes, the MGBA-LSTM-CNN model is proposed to encode questions and candidate attributes from the semantic level and word level, respectively, and splice them into new semantic vectors. Finally, the cosine distance is used to measure the similarity of the two vectors to find candidate attributes most similar to questions. The experimental results show that the system achieves good results in the Chinese question and answer data set.

Publisher

IOS Press

Subject

Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Construction of English Resource Database Network Information Recommendation Model Based on LSTM Algorithm;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3