Fault aware hybrid harmony search technique for optimal resource allocation in cloud

Author:

Gupta Punit1,Bhagat Sanjit1,Rawat Pradeep2

Affiliation:

1. Manipal University Jaipur Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India

2. DIT, University, Dehradun, India

Abstract

The evolution of cloud computing is increasing exponentially which provides everything as a service. Clouds made it possible to move a huge amount of data over the networks on-demand. It removed the physical necessity of resources as resources are available virtually over the networks. Emerge of new technologies improvising the cloud system and trying to overcome cloud computing challenges like resource optimization, securities etc. Proper utilization of resources is still a primary target for the cloud system as it will increase the cost and time efficiency. Cloud is a pay-per-uses basis model which needs to perform in a flexible manner with the increase and decrease in demand on every level. In general, cloud is assumed to be non-faulty but faulty is a part of any system. This article focuses on the hybridization of Neural networks with the harmony Search Algorithm (HSA). The hybrid approach achieves a better optimal solution in a feasible time duration in the faulty environment to improve the task failure and improve reliability. The harmony Search approach is inspired from the music improvisation technique, where notes are adjusted until perfect harmony is matched. HS (Harmony search) is chosen, as it is capable to provide an optimal solution in a feasible time, even for complex optimization problems. An ANN-HS model is introduced to achieve optimal resource allocation. The presented model is inspired by Harmony Search and ANN. The proposed model considers multi-objective criteria. The performance criteria include execution time, task failure count and power consumption(Kwh).

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3