Affiliation:
1. Department of Electronics and Communication Engineering, KLEF, K L University, Vaddeswaram, Guntur, A.P., India
Abstract
Removing of noise component is an important task in all practical applications like hearing aids, speech therapy etc. In speech communication applications the speech components are contaminated with various types of noises. Separation of speech and noise component is a key issue in hearing aids, speech therapy applications. This paper demonstrates a hybrid version of singular spectrum analysis (SSA) and independent component analysis (ICA) based adaptive noise canceller (ANC) to separate noise and speech components. As ICA is not suitable for single channel sources, SSA is used to map signal channel data to multivariant data. Therefore, SSA based ICA decomposition is used to generate reference for noise cancellation process. Variable Step based adaptive learning algorithm is used to separate noise contaminations from speech signals. To reduce computational complexity of system, sign regressor operation is applied to the data vector of the proposed adaptive learning methodology. Performance measures such as Signal to noise ratio improvement, excess mean square error and misadjustment are calculated for various considered ANCs, their values for crane noise are 29.6633 dB, – 27.4854 dB and 0.2058 respectively. Among the various adaptive learning algorithms, sign regressor based step variable method performs better than the other algorithms. Hence this learning methodology is well suited for hearing aids and speech therapy applications due to its robustness, less computational complexity and filtering ability.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献