GNN-DBSCAN: A new density-based algorithm using grid and the nearest neighbor

Author:

Yihong Li1,Yunpeng Wang1,Tao Li1,Xiaolong Lan1,Han Song1

Affiliation:

1. School of Cyber Science and Engineering, Sichuan University, Chengdu, China

Abstract

DBSCAN (density-based spatial clustering of applications with noise) is one of the most widely used density-based clustering algorithms, which can find arbitrary shapes of clusters, determine the number of clusters, and identify noise samples automatically. However, the performance of DBSCAN is significantly limited as it is quite sensitive to the parameters of eps and MinPts. Eps represents the eps-neighborhood and MinPts stands for a minimum number of points. Additionally, a dataset with large variations in densities will probably trap the DBSCAN because its parameters are fixed. In order to overcome these limitations, we propose a new density-clustering algorithm called GNN-DBSCAN which uses an adaptive Grid to divide the dataset and defines local core samples by using the Nearest Neighbor. With the help of grid, the dataset space will be divided into a finite number of cells. After that, the nearest neighbor lying in every filled cell and adjacent filled cells are defined as the local core samples. Then, GNN-DBSCAN obtains global core samples by enhancing and screening local core samples. In this way, our algorithm can identify higher-quality core samples than DBSCAN. Lastly, give these global core samples and use dynamic radius based on k-nearest neighbors to cluster the datasets. Dynamic radius can overcome the problems of DBSCAN caused by its fixed parameter eps. Therefore, our method can perform better on dataset with large variations in densities. Experiments on synthetic and real-world datasets were conducted. The results indicate that the average Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), Adjusted Mutual Information (AMI) and V-measure of our proposed algorithm outperform the existing algorithm DBSCAN, DPC, ADBSCAN, and HDBSCAN.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference34 articles.

1. Data clustering: a review;Jain;ACM Computing Surveys (CSUR),1999

2. STCCD: Semantic trajectory clustering based on community detection in networks;Liu;Expert Systems with Applications,2020

3. Multiple Strong and Balanced Clusters based Ensemble of Deep Learners;Jan;Pattern Recognition,2020

4. The use and reporting of cluster analysis in health psychology: A review;Clatworthy;British Journal of Health Psychology,2005

5. An isolated virtual cluster for SCADA network security research;Lemay;1st International Symposium for ICS & SCADA Cyber Security Research 2013 (ICS-CSR 2013),2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3