A Bayesian network structural learning algorithm for calculating the failure probabilities of complex engineering systems with limited data

Author:

Chen Yong1,Zhang Tianbao1,Wang Ruojun2,Cai Lei1

Affiliation:

1. China Construction Third Engineering Bureau Infrastructure Construction Investment Co., LTD, Wuhan, PR China

2. Northeastern University, Shenyang, PR China

Abstract

The failure of complex engineering systems is easy to lead to disastrous consequences. To prevent the failure, it is necessary to model complex engineering systems using probabilistic techniques with limited data which is a major feature of complex engineering systems. It is a good choice to perform such modeling using Bayesian network because of its advantages in probabilistic modeling. However, few Bayesian network structural learning algorithms are designed for complex engineering systems with limited data. Therefore, an algorithm for learning the Bayesian network structure of them should be developed. Based on the process of self-purification of water, a complex engineering system is segmented into three components according to the degree of difficulty in solving them. And then a Bayesian network learning algorithm with three components (TC), including PC algorithm, MIK algorithm which is originated by the paper through combining Mutual Information and K2 algorithm, and the Hill-Climbing method, is developed, i.e. TC algorithm. To verify its effectiveness, TC algorithm, K2 algorithm, and Max-Min Hill-Climbing are respectively used to learn Alarm network with different sizes of samples. The results imply that TC algorithm has the best performance. Finally, TC algorithm is applied to study tank spill accidents with 220 samples.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference34 articles.

1. What is a complex system?;James;European Journal for Philosophy of Science,2013

2. Real time speed control of three phase induction motor by using lab view with fuzzy logic;Santhiya;Journal on Science Engineering and Technology,2018

3. Robust optimization for dynamic economic dispatch under wind power uncertainty with different levels of uncertainty budget;Zhang;IEEE Access,2016

4. Solar roadways-the future rebuilding infrastructure and economy;Hemalatha;International Journal of Electrical and Electronics Research,2016

5. Fuzzy grammar based hybrid split-capacitors and split inductors applied in positive output luo-converters;Dhivya;International Journal of Scientific Research in Science, Engineering and Technology,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3