A speed inference planning of groove cutting robot based on machine vision and improved fuzzy neural network

Author:

Xuejian Zhang12,Xiaobin Hu12,Hang Li12

Affiliation:

1. School of Mechanical Engineering, Sichuan University, South Section, Chengdu City, Sichuan Province, China

2. Industrial Technology Research Institute, Yibin Sichuan University, Cuiping District, Yibin City, Sichuan Province, China

Abstract

To ensure the cutting speed during the cutting operation, this paper proposes a groove cutting speed inference planning system that relies on production experience and set parameters and is based on machine vision and a two-level fuzzy neural hybrid network. The overall structure of the inference system is designed, including the mechanical body, vision system, and fuzzy neural hybrid network. The contour information of the part is obtained using industrial cameras and digital image processing systems. The cutting speed of the trajectory segment is inferred based on the related processing parameters and the secondary fuzzy neural hybrid network. Finally, all of the processing parameters are transmitted to the PLC, so that the robot can work according to the predetermined displacement and speed. Simulations verify that the speed inference planning system offers certain advantages compared to the traditional one. The appearance of the speed inference planning realises independent design and planning of the cutting speed, and further ensures the unity of the cutting quality and cutting speed. This proposed method provides a new direction for the development and transformation of machining processes that rely on manual experience and in which expert systems cannot be used.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3