Affiliation:
1. Nanjing University of Aeronautics and Astronautics, Nanjing, China
2. National Quality Supervision and Testing Center for RFID Product (Jiangsu). Nanjing, China
Abstract
As a non-contact automatic identification technology, Radio Frequency Identification (RFID) is of great significance to improve the simultaneous identification of multi-target. This paper designs a more efficient and accurate multi-tag reading performance measurement system based on the fusion of YOLOv3 and Elman neural network. In the machine vision subsystem, multi-tag images are collected by dual CCD and detected by neural network algorithm. The reading distance of 3D distributed multi-tag is measured by laser ranging to evaluate the reading performance of RFID system. Firstly, the multi-tag are detected by YOLOv3, which realizes the measurement of 3D coordinates, improves the prediction accuracy, enhances the recognition ability of small targets, and improves the accuracy of 3D coordinate detection. Secondly, the relationship between the 3D coordinates and the corresponding reading distance of RFID multi-tag are modelled by Elman recurrent neural network. Finally, the reading performance of RFID multi-tag is optimized. Compared with the state-of-the-arts, the multi-tag detection rate of YOLOv3 is 17.4% higher and the time is 3.27 times higher than that of the previous template matching algorithm. In terms of reading performance, the MAPE of Elman neural network is 1.46 %, which is at least 21.43 % higher than other methods. In running time, Elman only needs 1.69s, which is at least 28.40% higher than others. Thus, the system not only improves the accuracy, but also improves the speed, which provides a new insight for the measurement and optimization of RFID performance.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献