Cloud-edge collaboration based transferring prediction of building energy consumption

Author:

Zhang Jinping1,Deng Xiaoping1,Li Chengdong1,Su Guanqun2,Yu Yulong1

Affiliation:

1. Shandong Key Laboratory of Intelligent BuildingsTechnology, School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan, China

2. Shandong Internet of Things Association, Jinan, China

Abstract

Building energy consumption (BEC) prediction often requires constructing a corresponding model for each building based historical data. However, the constructed model for one building is difficult to be reused in other buildings. Recent approaches have shown that cloud-edge collaboration architecture is promising in realizing model reuse. How to complete the reuse of cloud energy consumption prediction models at the edge and reduce the computational cost of the model training is one of the key issues that need to be solved. To handle the above problems, a cloud-edge collaboration based transferring prediction method for BEC is proposed in this paper. Specifically, a model library stored prediction models for different types of buildings is constructed based the historical energy consumption data and the long short-term memory (LSTM) network in the cloud firstly; then, the similarity measurement strategies of time series with different granularity are given, and the model to be transferred from the model library is matched by analyzing the similarity between observation data uploaded to the cloud and the historical data collected in the cloud; finally, the fine-tuning strategy of the matching prediction model is given, and this model is fine-tuned at the edge to achieve its reuse in concrete application scenarios. Experiments on practical datasets reveal that compared with the prediction model which doesn’t utilize the transfer strategy, the proposed prediction model has better performance according to MAE and RMSE. Experimental results also confirm that the proposed method effectively reduces the computational cost of the network training at the edge.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3