A matrix factorization recommendation model for tourism points of interest based on interest shift and differential privacy

Author:

Xu Zhiyun1,Hu Zhaoyan23,Zheng Xiaoyao23,Zhang Haiyan23,Luo Yonglong123

Affiliation:

1. School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui, China

2. School of Computer and Information, Anhui Normal University, Wuhu, Anhui, China

3. Anhui Provincial Key Laboratory of Network and Information Security, Wuhu, Anhui, China

Abstract

Adding noise to user history data helps to protect user privacy in recommendation systems but affects the recommendation performance. To solve this problem, a matrix factorization tourism point of interest recommendation model based on interest offset and differential privacy is proposed in this paper. The recommendation performance of the model is improved by analyzing user interest preferences. Specifically, user interest offsets are extracted from user tags and user ratings under time-series factors to calculate user interest drift. Then, similar neighbors are found to train user feature preferences which are integrated into the matrix model in the form of regular terms. Meanwhile, based on the differential privacy theory, a privacy neighbor selection algorithm combining the K-Medoides clustering algorithm and index mechanism is designed to effectively protect the identity of neighbors and prevent KNN attacks. Besides, the Laplace mechanism is used to implement differential privacy protection for the model’s gradient descent process. Finally, the feasibility of the proposed recommendation model is verified through experiments, and the experimental results indicate that this model has advantages in recommendation accuracy and privacy protection.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference20 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3