Enhanced regression model using cluster based sampling techniques

Author:

Dhamodharavadhani S.1,Rathipriya R.1

Affiliation:

1. Department of Computer Science, Periyar University, Salem, Tamil Nadu, India

Abstract

This paper aims to develop the methodology for enhancing the regression models using Cluster based sampling techniques (CST) to achieve high predictive accuracy and can also be used to handle large datasets. Hard clustering (KMeans Clustering) or Soft clustering (Fuzzy C-Means) to generate samples called clusters, which in turn is used to generate the Local Regression Models (LRM) for the given dataset. These LRMs are used to create a Global Regression Model. This methodology is known as Enhanced Regression Model (ERM). The performance of the proposed approach is tested with 5 different datasets. The experimental results revealed that the proposed methodology yielded better predictive accuracy than the non-hybrid MLR model; also, fuzzy C-Means performs better than the KMeans clustering algorithm for sample selection. Thus, ERM has potential to handle data with uncertainty and complex pattern and produced a high prediction accuracy rate.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference19 articles.

1. Cohen J. , Cohen P. , West S.G. , Aiken L.S. Applied multiple regression/correlation analysis for the behavioral sciences. 3rd ed. Mahwah: Erlbaum; 2003. Return to ref 1 in article.

2. Kutner M.H. , Nachtsheim C.J. , Neter J. , Li W. Applied linear statistical models. 5th ed. New York: McGraw Hill; 2005.

3. Montgomery D.C. , Peck E.A. , Vining G.G. Introduction to linear regression analysis. 5th ed. Hoboken: Wiley; 2012.

4. Sample size and multiple regression analysis;Maxwell;Psychological Methods,2000

5. Pedhazur E.J. , Schmelkin L.P. Schmelkin, Measurement, design, and analysis: An integrated approach. Hillside, NJ: Lawrence Erlbaum. 1991.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3