A new dynamic displacement prediction method for contactors with constant air gap

Author:

Wang Gongrun1,Dong Enyuan1,Wang Yongxing1,Yin Sheng1,Zhang Liyan1,Qin Taotao2

Affiliation:

1. , Dalian University of Technology, , China

2. , Nanjing University of Science and Technology, , China

Abstract

In order to improve the dynamic characteristics of the contactor, this paper proposes a new dynamic displacement prediction method for contactors with constant air gap. The dynamic displacement process can be predicted by observing the flux linkage produced by the permanent magnet. The equivalent magnetic circuit model of electromagnetic force driving actuator (EMFA) is established. The formulas of dynamic flux linkage, displacement and current are deduced, and the displacement prediction of the contactor is completed. The curved surfaces of driving force, flux linkage, displacement and current are established by finite element method. The movement process of the contactor is dynamically simulated by interpolation method. Finally, an EMFA-driven contactor is used for the experiment. Experimental results show that the new dynamic displacement prediction method is suitable for contactors with constant air gap. On the basis of sensorless control, bounce time of the contact can be effectively reduced by adjusting the PWM duty cycle and the corresponding displacement control parameters. The research in this article can be used to guide the design of future controllers. And the simulation results are consistent with the experimental results. The experiment verifies the effectiveness of the new dynamic displacement prediction method.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3