GWS: Rotation object detection in aerial remote sensing images based on Gauss–Wasserstein scattering

Author:

Gan Ling1,Tan Xiaodong1,Hu Liuhui2

Affiliation:

1. School of Computer, Chongqing University of Posts and Telecommunications, Chongqing, China

2. School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China

Abstract

The majority of existing rotating target detectors inherit the horizontal detection paradigm and design the rotational regression loss based on the inductive paradigm. But the loss design limitation of the inductive paradigm makes these detectors hardly detect effectively tiny targets with high accuracy, particularly for large-aspect-ratio objects. Therefore, in view of the fact that horizontal detection is a special scenario of rotating target detection and based on the relationship between rotational and horizontal detection, we shift from an inductive to a deductive paradigm of design to develop a new regression loss function named Gauss–Wasserstein scattering (GWS). First, the rotating bounding box is transformed into a two-dimensional Gaussian distribution, and then the regression losses between Gaussian distributions are calculated as the Wasserstein scatter; By analyzing the gradient of centroid regression, centroid regression is shown to be able to adjust gradients dynamically based on object characteristics, and small targets requiring high accuracy detection rely on this mechanism, and more importantly, it is further demonstrated that GWS is scale-invariant while possessing an explicit regression logic. The method is performed on a large public remote sensing dataset DOTA and two popular detectors and achieves a large accuracy improvement in both large aspect ratio targets and small targets detection compared to similar methods.

Publisher

IOS Press

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3