Deep learning-based anatomical position recognition for gastroscopic examination

Author:

Su Xiufeng1,Liu Weiyu1,Jiang Suyi1,Gao Xiaozhong1,Chu Yanliu1,Ma Liyong2

Affiliation:

1. Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China

2. School of Information Science and Engineering, Harbin Institute of Technology, Weihai, Shandong, China

Abstract

BACKGROUND: The gastroscopic examination is a preferred method for the detection of upper gastrointestinal lesions. However, gastroscopic examination has high requirements for doctors, especially for the strict position and quantity of the archived images. These requirements are challenging for the education and training of junior doctors. OBJECTIVE: The purpose of this study is to use deep learning to develop automatic position recognition technology for gastroscopic examination. METHODS: A total of 17182 gastroscopic images in eight anatomical position categories are collected. Convolutional neural network model MogaNet is used to identify all the anatomical positions of the stomach for gastroscopic examination The performance of four models is evaluated by sensitivity, precision, and F1 score. RESULTS: The average sensitivity of the method proposed is 0.963, which is 0.074, 0.066 and 0.065 higher than ResNet, GoogleNet and SqueezeNet, respectively. The average precision of the method proposed is 0.964, which is 0.072, 0.067 and 0.068 higher than ResNet, GoogleNet, and SqueezeNet, respectively. And the average F1-Score of the method proposed is 0.964, which is 0.074, 0.067 and 0.067 higher than ResNet, GoogleNet, and SqueezeNet, respectively. The results of the t-test show that the method proposed is significantly different from other methods (p< 0.05). CONCLUSION: The method proposed exhibits the best performance for anatomical positions recognition. And the method proposed can help junior doctors meet the requirements of completeness of gastroscopic examination and the number and position of archived images quickly.

Publisher

IOS Press

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3