Cell type-specific orientation and migration responses for a microgrooved surface with shallow grooves

Author:

Nagayama Kazuaki1,Hanzawa Tatsuya1

Affiliation:

1. Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, , Japan

Abstract

BACKGROUND: Directional cell migration due to mechanosensing for in vivo microenvironment, such as microgrooved surfaces, is an essential process in tissue growth and repair in both normal and pathological states. Cell migration responses on the microgrooved surfaces might be reflected by the cell type difference, which is deeply involved in cellular physiological functions. Although the responses are implicated in focal adhesions (FAs) of cells, limited information is available about cell migration behavior on the microgrooved surfaces whose dimensions are comparable with the size of FAs. OBJECTIVE: In the present study, we investigated the cell orientation and migration behavior of normal vascular smooth muscle cells (VSMCs) and cervical cancer HeLa cells on the microgrooved surface. METHOD: The cells were cultured on the PDMS substrate comprising shallow grooves with 2-µm width and approximately 150-nm depth, which indicates the same order of magnitude as that of the horizontal and vertical size of FAs, respectively. The cell migration and intracellular structures were analyzed by live cell imaging and confocal fluorescence microscopy. The intracellular tension was also assessed using atomic force microscopy (AFM). RESULTS: VSMCs presenting well-aligned actin stress fibers with mature FAs revealed marked cell elongation and directional migration on the grooves; however, HeLa cells with nonoriented F-actin with smaller FAs did not. The internal force of the actin fibers was significantly higher in VSMCs than that in HeLa cells, and the increase or decrease in the cytoskeletal forces improved or diminished the sensing ability for shallow grooves, respectively. The results strongly indicated that directional cell migration should be modulated by cell type-specific cytoskeletal arrangements and intracellular traction forces. The differences in cell type-specific orientation and migration responses can be emphasized on the microgrooves as large as the horizontal and vertical size of FAs. CONCLUSION: The microgoove structure in the size range of the FA protein complex is a powerful tool to clarify subtle differences in the intracellular force-dependent substrate mechanosensing.

Publisher

IOS Press

Subject

Biomedical Engineering,Biomaterials,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3