Affiliation:
1. School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, China
Abstract
PURPOSE: The adaptive steepest descent projection onto convex set (ASD-POCS) algorithm is a promising algorithm for constrained total variation (TV) type norm minimization models in computed tomography (CT) image reconstruction using sparse and/or noisy data. However, in ASD-POCS algorithm, the existing gradient expression of the TV-type norm appears too complicated in the implementation code and reduces image reconstruction speed. To address this issue, this work aims to develop and test a simple and fast ASD-POCS algorithm. METHODS: Since the original algorithm is not derived thoroughly, we first obtain a simple matrix-form expression by thorough derivation via matrix representations. Next, we derive the simple matrix expressions of the gradients of TV, adaptive weighted TV (awTV), total p-variation (TpV), high order TV (HOTV) norms by term combinations and matrix representations. The deep analysis is then performed to identify the hidden relations of these terms. RESULTS: The TV reconstruction experiments by use of sparse-view projections via the Shepp-Logan, FORBILD and a real CT image phantoms show that the simplified ASD-POCS (S-ASD-POCS) using the simple matrix-form expression of TV gradient achieve the same reconstruction accuracy relative to ASD-POCS, whereas it enables to speed up the whole ASD process 1.8–2.7 time fast. CONCLUSIONS: The derived simple matrix expressions of the gradients of these TV-type norms may simplify the implementation of the ASD-POCS algorithm and speed up the ASD process. Additionally, a general gradient expression suitable to all the sparse transform-based optimization models is demonstrated so that the ASD-POCS algorithm may be tailored to extended image reconstruction fields with accelerated computational speed.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献