Adipose tissue regeneration in a 3D-printed poly(lactic acid) frame-supported space in the inguinal region of rats

Author:

Kambe Yusuke1,Ogino Shuichi2,Yamanaka Hiroki2,Morimoto Naoki2,Yamaoka Tetsuji1

Affiliation:

1. , , , , , Japan

2. , , Kyoto University, , , , , Japan

Abstract

BACKGROUND: Adipose tissue engineering has been studied as an alternative to current options for breast reconstruction, such as lipofilling, flap reconstruction, and silicone implants. Previously, we demonstrated that a poly(L-lactic acid) mesh containing a collagen sponge, containing neither cells nor growth factors, could be filled with the regenerated adipose tissues when implanted in rodent models. However, the main factor contributing to adipogenesis remained unclear. OBJECTIVE: We aimed to clarify whether adipogenesis can be achieved by the space provided by the mesh or by the bioactivity of collagen. METHODS: A three-dimensional (3D) poly(lactic acid) (PLA) frame, which was stiff enough to maintain its shape, was fabricated by 3D printing. The frame with (PLA+ColI) or without (PLA only) a type I collagen hydrogel was implanted in the inguinal region of rats for up to 12 months. Adipose tissue regeneration in the PLA only and PLA+ColI groups was evaluated histologically. RESULTS: The 3D PLA frame maintained its structure for 12 months in vivo and oil red O (ORO)-positive adipose tissues were regenerated in the frame. No significant difference in the ORO-positive area was detected between the PLA only and PLA+ColI groups. CONCLUSION: The space supported by the frame was a key factor in adipogenesis in vivo.

Publisher

IOS Press

Subject

Biomedical Engineering,Biomaterials,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3