Resting-State Functional Connectivity Change in Frontoparietal and Default Mode Networks After Acute Exercise in Youth

Author:

Cline Trevor L.12ORCID,Morfini Francesca12,Tinney Emma12,Makarewycz Ethan1,Lloyd Katherine1,Olafsson Valur3,Bauer Clemens C.C.124,Kramer Arthur F.125,Raine Lauren B.126,Gabard-Durnam Laurel J.12,Whitfield-Gabrieli Susan124,Hillman Charles H.126

Affiliation:

1. Department of Psychology, Northeastern University, Boston, MA, USA

2. Center for Cognitive & Brain Health, Northeastern University, Boston, MA

3. Northeastern University Biomedical Imaging Center, Northeastern University, Boston, MA, USA

4. Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA

5. Beckman Institute for Advanced Science & Technology, University of Illinois, Urbana, Il, USA

6. Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA, USA

Abstract

BACKGROUND: A single bout of aerobic exercise can provide acute benefits to cognition and emotion in children. Yet, little is known about how acute exercise may impact children’s underlying brain networks’ resting-state functional connectivity (rsFC). OBJECTIVE: Using a data-driven multivariate pattern analysis, we investigated the effects of a single dose of exercise on acute rsFC changes in 9-to-13-year-olds. METHODS: On separate days in a crossover design, participants (N = 21) completed 20-mins of acute treadmill walking at 65–75% heart rate maximum (exercise condition) and seated reading (control condition), with pre- and post-fMRI scans. Multivariate pattern analysis was used to investigate rsFC change between conditions. RESULTS: Three clusters in the left lateral prefrontal cortex (lPFC) of the frontoparietal network (FPN) had significantly different rsFC after the exercise condition compared to the control condition. Post-hoc analyses revealed that from before to after acute exercise, activity of these FPN clusters became more correlated with bilateral lPFC and the left basal ganglia. Additionally, the left lPFC became more anti-correlated with the precuneus of the default mode network (DMN). An opposite pattern was observed from before to after seated reading. CONCLUSIONS: The findings suggest that a single dose of exercise increases connectivity within the FPN, FPN integration with subcortical regions involved in movement and cognition, and segregation of FPN and DMN. Such patterns, often associated with healthier cognitive and emotional control, may underlie the transient mental benefits observed following acute exercise in youth.

Publisher

IOS Press

Reference105 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exercise and Neural Plasticity;Brain Plasticity;2024-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3