Outlier identification and adjustment for time series

Author:

Fröhlich Markus1

Affiliation:

1. Statistics Austria, Vienna, Austria

Abstract

Identification and replacement of erroneous data is of fundamental importance for the quality of statistical surveys. If statistical units are continuously sampled over an extended period, time series methods can facilitate this task. Numerous outlier identification and replacement procedures are accessible for this particular purpose, like RegArima Approaches within the seasonal adjustment procedures in X13-Arima or Tramo/Seats. These algorithms can be used to identify different types of outliers, like additive outliers, level shifts or transitory changes. In this paper an alternative outlier identification procedure is proposed which is based on a nonlinear model estimated with support vector regressions. The focus of this procedure is on the identification of additive outliers and on the applicability for short time series with less than 3 years of observations.

Publisher

IOS Press

Reference25 articles.

1. Estimation of Time Series Parameters in the Presence of Outliers;Chang;Technometrics.,1988

2. Otto MC, Bell WR. Two issues in time series outlier detection using indicator variables. In: Proceedings of the American Statistical Association, Business and Economic Statistics Section; 1990; pp. 182-7.

3. Joint Estimation of Model Parameters and Outlier Effects in Time Series;Chen;Journal of the American Statistical Association.,1993

4. “Automatic Time Series Forecasting: The forecast Package for R”;Hyndman;Journal of Statistical Software.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3