Noise-driven signal study of power systems based on stochastic partial differential equations

Author:

Chen Yanfen

Abstract

The exploration of stochastic partial differential equations in noisy perturbations of dynamical systems remains a major challenge at this stage. The study analyzes the effective dynamical system combining degenerate additive noise-driven stochastic partial differential equations, firstly in the first class of stochastic partial differential equations, the terms in the non-nuclear space formed by nonlinear interactions are overcome by effectively replacing the elements in the non-nuclear space through the ItÔ formulation, and thus the final effective dynamical system is obtained. The effective dynamical system is then obtained in the second type of stochastic partial differential equation using the O-U process similar to the terms in the non-nuclear space. At noise disturbance amplitudes of 5%, 10%, 15% and 20% AC voltage maxima in that order, the effective dynamical systems for the first type of stochastic partial differential equation and the second type of stochastic partial differential equation are more stable compared to the other types of partial differential equation dynamical systems, with the maximum range of error rate improvement for the sampling points 0–239 voltage rms and voltage initial phase value being 3.62% and 26.85% and 2.13% and 19.86% for sampling points 240–360, respectively. The effective dynamic system and stochastic partial differential equation obtained by the research have very high approximation effect, and can be applied to mechanical devices such as thermal power machines.

Publisher

IOS Press

Subject

Computational Mathematics,Computer Science Applications,General Engineering

Reference24 articles.

1. Setayeshgar L. Large deviations for a class of parabolic semilinear stochastic partial differential equations in any space dimension. Markov Processes Relat. 2019; 25(5): 899-914.

2. Analysis of a spatially inhomogeneous stochastic partial differential equation epidemic model;Nguyen;J Appl Probab.,2020

3. Bearing fault diagnosis of switched reluctance motor in electric vehicle powertrain via multisensor data fusion;Wang;IEEE T Ind Inform.,2022

4. Engine start-up optimal control for a compound power-split hybrid powertrain;Zhao;Mech Syst Signal Pr.,2019

5. Boundary behavior and interior Holder regularity of the solution to nonlinear stochastic partial differential equation driven by space-time white noise;Han;J Differ Equations.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3