Knowledge fusion method of power grid model based on Seq2seq half pointer and half label method

Author:

Zhou Yuzhong1,Lin Zhengping1,Wu Zhengrong1,Zhang Zifeng1

Affiliation:

1. Electric Power Research Institute, China Southern Power Grid Company, Guangdong Guangzhou, China

Abstract

Due to the complexity of the calculation process of the existing methods, the efficiency of data fusion of the power grid model is low. In order to improve the knowledge fusion effect of power grid model, this paper studied the knowledge fusion method of power grid model based on Seq2seq half pointer and half label method. The Text Rank algorithm is used to calculate the weight of semantic nodes of each grid model, and combined with the topological potential method, the semantic information of the grid model is extracted according to the final weight value, and the Seq2Seq semi-pointer semi-label model framework is constructed. The data of the scheduling automation system OMS and the production management system PMS are used as input. The extracted candidate mesh model semantics and the original mesh model semantics are encoded by Seq2Seq half-pointer half-label model. The semantic data of the power grid model is fused and sent to the Seq2Seq encoder. After the training is completed, the effective information is extracted from the power grid model through the Seq2Seq model to complete the knowledge fusion of the power grid model. Experimental results show that this method eliminates the redundant part of the basic attributes of each data source in the substation grid model after knowledge fusion, and the description of each basic attribute is more standardized, unified and perfect. Under different mesh model data dimensions, the support of the proposed method is all above 98%. The model trained by the proposed method tends to be stable after 120 iterations, and the precision, recall and F1 of the test set are 0.98, 0.93 and 0.91, respectively. At the same time, this method has high efficiency in the knowledge fusion processing of the power grid model, and its data processing speed is less than 160 s. The average integrity of the private data of the power grid model is 98.86%, indicating that the proposed method can better ensure the integrity of the data. Finally, compared with the application of other methods under different data amounts, the mean square error obtained by the proposed method is the smallest, indicating that the proposed method effectively improves the fusion accuracy.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3