Efficient malicious node detection by multi-objective energy trust aware hybrid optimization based maximizing lifetime of wireless sensor networks

Author:

Parthiban P.1,Vaisakhi V.S.1

Affiliation:

1. Department of Electronics and Communication Engineering, Nehru Institute of Engineering and Technology, Coimbatore, Tamil Nadu

Abstract

Wireless sensor network (WSN) collect and detect data in real time, but their battery life limits their lifetime. The CH selection process increases network overhead and reduces lifetime, but it considers node processing and energy limitations. To solve that problem this research methodology proposed Multi Objective Energy trust - Aware Optimal Clustering and Secure Routing (MOETAOCSR) protocol. At first, the trust factors such as direct and indirect factors are calculated. Thus, the calculated values are given as input to the SDLSTM to detect the malicious node and normal node. Here, the network deployment process is initially carried out and then the cluster is formed by HWF-FCM. From the clustered sensor nodes, the cluster head is selected using Golden Jackal Siberian Tiger Optimization (GJSTO) approach. Then, the selection of CH the paths are learned by using the Beta Distribution and Scaled Activation Function based Deep Elman Neural Network (BDSAF-DENN) and from the detected paths the optimal paths are selected using the White Shark Optimization (WSO). From the derived path sensed data securely transferred to the BS for further monitoring process using FPCCRSA. The proposed technique is implemented in a MATLAB platform, where its efficiency is assessed using key performance metrics including network lifetime, packet delivery ratio, and delay. Compared to existing models such as EAOCSR, RSA, and Homographic methods, the proposed technique achieves superior results. Specifically, it demonstrates a 0.95 improvement in throughput, 0.8 enhancement in encryption time, and a network lifetime of 7.4.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3