A topic relevance-aware click model for web search

Author:

Jianping Liu12,Yingfei Wang1,Jian Wang3,Meng Wang1,Xintao Chu1

Affiliation:

1. College of Computer Science and Engineering, North Minzu University, Yinchuan, China

2. The Key Laboratory of Images and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, China

3. Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China

Abstract

To better understand users’ behavior patterns in web search, numerous click models are proposed to extract the implicit interaction feedback. Most existing click models are heavily based on the implicit information to model user behaviors, ignoring the impact of explicit information between queries and documents in search sessions. In this paper, we fully consider the topic relevance between queries and documents in search sessions and propose a novel topic relevance-aware click model (TRA-CM) for web search. TRA-CM consists of a relevance estimator and an examination predictor. The relevance estimator consists of a topic relevance predictor and a click context encoder. In the topic relevance predictor, we utilize the pre-trained BERT model to model the content information of queries and documents in search sessions. Meanwhile, we use transformer to encode users’ click behaviors in the click context encoder. We further apply a two-stage fusion strategy to obtain the final relevance scores. The examination predictor estimates the examination probability of each document. We further utilize learnable filters to attenuate log noise and obtain purer input features in both relevance estimator and examination predictor, and investigate different combination functions to integrate relevance scores and examination probabilities into click prediction. Extensive experiment results on two real-world session datasets prove that TRA-CM outperforms existing click models in both click prediction and relevance estimation tasks.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3