Hybrid deep convolution network and differential evolution algorithm for solving non-permutation flow shop scheduling problem

Author:

Li Yibing1,Jiang Shijin1,Wang Lei1

Affiliation:

1. Wuhan University of Technology, Wuhan, China

Abstract

With explosive growth of industrial big data, workshop scheduling faces problems such as high complexity, multi-dimensionality and low stability. Recent years, the wide application of deep learning provides new idea for scheduling problem. In this paper, a hybrid deep convolution network and differential evolution algorithm is proposed to solve the non-permutation flow shop scheduling problem with the goal of minimizing total completion time. Mining relationship between job attributes and process priority by deep convolutional network is core idea of this method. In this paper, differential evolution algorithm is used to obtain the data set for deep learning, and neighborhood search algorithm is used to optimize scheduling solution. Additionally, a method combining k-means algorithm and data statistics is proposed, which provides a reasonable way for priority division. The experimental results show that this method can greatly improve scheduling efficiency.

Publisher

IOS Press

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3