Affiliation:
1. School of Business, Central South University, Changsha, China
Abstract
To enhance infection diseases interval prediction, an improved model is proposed by integrating neighborhood fuzzy information granulation (NNIG) and spatial-temporal graph neural network (STGNN). Additionally, the NNIG model can efficiently extract the most representative features from the time series data and identifies the support upper and lower bounds. NNIG model transfers time series data from numerical level to granular level, and processes data feed it into STGNN for interval prediction. Finally, experiments are conducted for evaluation based on the COVID-19 data. The results demonstrate that the NNIG outperforms baseline models. Further, it proves beneficial in offering a valuable approach for policy-making.