Mutual information-based multi-output tree learning algorithm

Author:

Kang Hyun-Seok12,Jun Chi-Hyuck3

Affiliation:

1. Technical Research Laboratories, POSCO, Pohang, Korea

2. Graduate Institute of Ferrous Technology, Pohang University of Science and Technology (POSTECH), Pohang, Korea

3. Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea

Abstract

A tree model with low time complexity can support the application of artificial intelligence to industrial systems. Variable selection based tree learning algorithms are more time efficient than existing Classification and Regression Tree (CART) algorithms. To our best knowledge, there is no attempt to deal with categorical input variable in variable selection based multi-output tree learning. Also, in the case of multi-output regression tree, a conventional variable selection based algorithm is not suitable to large datasets. We propose a mutual information-based multi-output tree learning algorithm that consists of variable selection and split optimization. The proposed method discretizes each variable based on k-means into 2–4 clusters and selects the variable for splitting based on the discretized variables using mutual information. This variable selection component has relatively low time complexity and can be applied regardless of output dimension and types. The proposed split optimization component is more efficient than an exhaustive search. The performance of the proposed tree learning algorithm is similar to or better than that of a multi-output version of CART algorithm on a specific dataset. In addition, with a large dataset, the time complexity of the proposed algorithm is significantly reduced compared to a CART algorithm.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3