Improving discretization based pattern discovery for multivariate time series by additional preprocessing

Author:

Noering Fabian Kai-Dietrich1,Jonas Konstantin21,Klawonn Frank341

Affiliation:

1. Volkswagen AG, Wolfsburg, Germany

2. Volkswagen AG, Deutsche Bahn AG, Germany

3. Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany

4. Helmholtz Center for Infection Research, Braunschweig, Germany

Abstract

In technical systems the analysis of similar load situations is a promising technique to gain information about the system’s state, its health or wearing. Very often, load situations are challenging to be defined by hand. Hence, these situations need to be discovered as recurrent patterns within multivariate time series data of the system under consideration. Unsupervised algorithms for finding such recurrent patterns in multivariate time series must be able to cope with very large data sets because the system might be observed over a very long time. In our previous work we identified discretization-based approaches to be very interesting for variable length pattern discovery because of their low computing time due to the simplification (symbolization) of the time series. In this paper we propose additional preprocessing steps for symbolic representation of time series aiming for enhanced multivariate pattern discovery. Beyond that we show the performance (quality and computing time) of our algorithms in a synthetic test data set as well as in a real life example with 100 millions of time points. We also test our approach with increasing dimensionality of the time series.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3