A Unified Method to Decentralized State Detection and Fault Diagnosis/prediction of Discrete-event Systems

Author:

Zhang Kuize1

Affiliation:

1. Control Systems Group, Technical University of Berlin, Berlin, Germany. kuize.zhang@campus.tu-berlin.de

Abstract

The state detection problem and fault diagnosis/prediction problem are fundamental topics in many areas. In this paper, we consider discrete-event systems (DESs) modeled by finite-state automata (FSAs). There exist plenty of results on decentralized versions of the latter problem but there is almost no result for a decentralized version of the former problem. In this paper, we propose a decentralized version of strong detectability called co-detectability which means that if a system satisfies this property, for each generated infinite-length event sequence, in at least one location the current and subsequent states can be determined by observations in the location after a common observation time delay. We prove that the problem of verifying co-detectability of deterministic FSAs is coNP-hard. Moreover, we use a unified concurrent-composition method to give PSPACE verification algorithms for co-detectability, co-diagnosability, and co-predictability of FSAs, without any assumption on or modification of the FSAs under consideration, where co-diagnosability is first studied by [Debouk & Lafortune & Teneketzis 2000], co-predictability is first studied by [Kumar & Takai 2010]. By our proposed unified method, one can see that in order to verify co-detectability, more technical difficulties will be met compared with verifying the other two properties, because in co-detectability, generated outputs are counted, but in the latter two properties, only occurrences of events are counted. For example, when one output was generated, any number of unobservable events could have occurred. PSPACE-hardness of verifying co-diagnosability is already known in the literature. In this paper, we prove PSPACE-hardness of verifying co-predictability.

Publisher

IOS Press

Subject

Computational Theory and Mathematics,Information Systems,Algebra and Number Theory,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3