Copyful Streaming String Transducers

Author:

Filiot Emmanuel1,Reynier Pierre-Alain2

Affiliation:

1. Université libre de Bruxelles (U.L.B.), Belgium. efiliot@ulb.ac.be

2. Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France. pierre-alain.reynier@univ-amu.fr

Abstract

Copyless streaming string transducers (copyless SST) have been introduced by R. Alur and P. Černý in 2010 as a one-way deterministic automata model to define transductions of finite strings. Copyless SST extend deterministic finite state automata with a set of variables in which to store intermediate output strings, and those variables can be combined and updated all along the run, in a linear manner, i.e., no variable content can be copied on transitions. It is known that copyless SST capture exactly the class of MSO-definable string-to-string transductions, and are as expressive as deterministic two-way transducers. They enjoy good algorithmic properties. Most notably, they have decidable equivalence problem (in PSpace). On the other hand, HDT0L systems have been introduced for a while, the most prominent result being the decidability of the equivalence problem. In this paper, we propose a semantics of HDT0L systems in terms of transductions, and use it to study the class of deterministic copyful SST. Our contributions are as follows: (i)HDT0L systems and total deterministic copyful SST have the same expressive power, (ii)the equivalence problem for deterministic copyful SST and the equivalence problem for HDT0L systems are inter-reducible, in quadratic time. As a consequence, equivalence of deterministic SST is decidable, (iii)the functionality of non-deterministic copyful SST is decidable, (iv)determining whether a non-deterministic copyful SST can be transformed into an equivalent non-deterministic copyless SST is decidable in polynomial time.

Publisher

IOS Press

Subject

Computational Theory and Mathematics,Information Systems,Algebra and Number Theory,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3