Empirical comparison of skewed t-copula models for insurance and financial data

Author:

Huang Liwei1,Shemyakin Arkady2

Affiliation:

1. University of Minnesota, USA

2. University of St. Thomas, USA

Abstract

Skewed t-copulas recently became popular as a modeling tool of non-linear dependence in statistics. In this paper we consider three different versions of skewed t-copulas introduced by Demarta and McNeill; Smith, Gan and Kohn; and Azzalini and Capitanio. Each of these versions represents a generalization of the symmetric t-copula model, allowing for a different treatment of lower and upper tails. Each of them has certain advantages in mathematical construction, inferential tools and interpretability. Our objective is to apply models based on different types of skewed t-copulas to the same financial and insurance applications. We consider comovements of stock index returns and times-to-failure of related vehicle parts under the warranty period. In both cases the treatment of both lower and upper tails of the joint distributions is of a special importance. Skewed t-copula model performance is compared to the benchmark cases of Gaussian and symmetric Student t-copulas. Instruments of comparison include information criteria, goodness-of-fit and tail dependence. A special attention is paid to methods of estimation of copula parameters. Some technical problems with the implementation of maximum likelihood method and the method of moments suggest the use of Bayesian estimation. We discuss the accuracy and computational efficiency of Bayesian estimation versus MLE. Metropolis-Hastings algorithm with block updates was suggested to deal with the problem of intractability of conditionals.

Publisher

IOS Press

Subject

Applied Mathematics,Modeling and Simulation,Statistics and Probability

Reference27 articles.

1. Pair-copula constructions of multiple dependence;Aas;Insurance: Mathematics and Economics,2008

2. Aivazian, S., & Mhitarian, V. (1998). Applied statistics and foundations of econometrics Moscow, Unity, In Russian.

3. Bayesian approach to econometric analysis;Aivazian;Applied Econometrics,2008

4. Aivazian, S. & Fantazzini, D. (2015). Modeling joint distributions via copula functions. In: Econometrics-2. Advanced Course with Applications to Finance Moscow, HSE, In Russian.

5. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution;Azzalini;Jourmal of the Royal Statistical Society. Series B,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3