Improving the accuracy of multiclass classification in machine learning: A case study in a cell signaling dataset

Author:

González-Pérez Pedro Pablo1,Sánchez-Gutiérrez Máximo Eduardo2

Affiliation:

1. Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana-Cuajimalpa, Ciudad de México, México

2. Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, Ciudad de México, México

Abstract

It is important to make sense of the data within its context to propose a useful model to solve a problem. This domain knowledge includes information not contained in the data, but that will help us understand the data to be fed into a machine-learning algorithm and guide us on what features might help our model. Nevertheless, domain knowledge may become insufficient as the input variables increase, forcing the need to try automated feature selection techniques. In this study, we investigate whether the joint use of 1) feature selection techniques, such as Chi-square, Tree-based Feature Selection, Pearson’s Correlation, LASSO, Low Variance, and Recursive Feature Elimination, 2) outlier detection methods such as Isolation-Forest, and 3) Cross-Validation techniques lead to improving the accuracy in multiclass classification in machine learning. Specifically, we address the classification of patterns representing the activation state of cell signaling components into classes that symbolize the different cellular processes triggered in cancer cells. The results presented in this work have shown an accuracy increase with up to 80% fewer input features by only using 3 out of the 16 original descriptors.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3