Machine vision based flood monitoring system using deep learning techniques and fuzzy logic on crowdsourced image data

Author:

B Nair Bhavana1,Krishnamoorthy Shivsubramani2,M Geetha2,N Rao Sethuraman1

Affiliation:

1. Center for Wireless Networks & Applications (WNA), Amrita Vishwa Vidyapeetham, Amritapuri, India

2. Department of Computer Science and Engineering, Amrita School of Engineering, Amritapuri, India

Abstract

In recent times, frequent occurrences of natural disasters have been the cause of widespread disruptions to life and property. Albeit attempts to prevent such disasters may be a lost cause, emerging technologies can be resorted to, for minimization of their impact. This study proposes a deep learning-based computer vision and crowdsourcing methodology for the detection and estimation of flood depths, one of the most intense disruptive disasters. State-of-the-art flood detection systems work off of satellite or radar images. This research deals with processing images, captured at random, from flood ravaged zones, by smartphones or digital cameras. The crowdsourced image collection of the flood scenes afford better coverage and diverse perspectives, for assessments of the flood devastation. This paper proffers a fuzzy logic-based algorithm, and image segmentation based on color, to estimate the extent of flooding by analysis of crowdsourced images. Deployment of these methods helps in classification of the flooded areas into high, medium, or low level of flooding, to facilitate cost-effective, time-critical rescue operations. This algorithm yielded an accuracy of 83.1% on our dataset.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3