On the domain aided performance boosting technique for deep predictive networks: A COVID-19 scenario

Author:

Raychaudhuri Soumya Jyoti,Babu C. Narendra

Abstract

Deep learning models are one of the widely used techniques for forecasting time series data in various applications. It has already been established that the Recurrent Neural Networks (RNN) such as the Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), etc., perform well in analyzing sequence data for accurate time-series predictions. But, these specialized recurrent architectures suffer from certain drawbacks due to their computational complexity and also their dependency on short term historical data. Hence, there is a scope for further improvement. This paper analyzes the effects of various optimizers and hyper-parameter tuning, on the precision and time efficiency of different deep neural architectures. The analysis has been conducted on COVID-19 pandemic data. Since Convolutional Neural Networks (CNN) are known for their super-human ability in identifying patterns from images, the time-series data has been transformed into a slope-information domain for analyzing the slope patterns over time. The domain patterns have been projected on a 2D plane for further analysis using a restricted recursive CNN (RRCNN) algorithm. The experimental results reveal that the proposed methodology reduces the error over benchmarked sequence models by almost 20% and further reduces the training time by nearly 50%. The prediction models considered in this study have been evaluated using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE%).

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3