Optimization of software cost estimation model based on biogeography-based optimization algorithm

Author:

Ullah Aman1,Wang Bin1,Sheng Jinfang1,Long Jun1,Asim Muhammad1,Sun Zejun12

Affiliation:

1. School of Computer Science and Engineering, Central South University, Hunan, China

2. School of Information Engineering, Pingdingshan University, Pingdingshan, Henan, China

Abstract

Estimation of software cost (ESC) is considered a crucial task in the software management life cycle as well as time and quality. Prior to the development of a software project, precise estimations are required in the form of person month and time. In the last few decades, various parametric and non-algorithmic or non-parametric approaches regarding the estimation of software costs have been developed. Among them, the constrictive cost model (COCOMO-II) is a commonly used method for estimating software cost. To further improve the accuracy of this model, researchers and practitioners have applied numerous computational intelligence algorithms to optimize their parameters. However, accuracy is still a big problem in this model to be addressed. In this paper, we proposed a biogeography-based optimization (BBO) method to optimize the current coefficients of COCOMO-II for better estimation of software project cost or effort. The experiments are conducted on two standard data sets: NASA-93 and Turkish Industry software projects. The performance of the proposed algorithm called BBO-COCOMO-II is evaluated by using performance indicators including the manhattan distance (MD) and the mean magnitude of relative error (MMRE). Simulation results reveal that the proposed algorithm obtained high accuracy and significant error minimization compared to original COCOMO-II, particle swarm optimization, genetic algorithm, flower pollination algorithm, and other various baseline cost estimation models.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3