Affiliation:
1. National Engineering Laboratory of Speech and Language Information Processing, China
2. University of Science and Technology of China, Hefei, Anhui, China
Abstract
Stored-grain temperature is the most important factor in grain storage. According to the measured data, the temperature in the grain pile can be effectively predicted, which can find problems in advance, reduce grain loss and increase grain quality. Long Short-Term memory (LSTM) can perform better in longer sequences than ordinary RNN. This paper is applied to the analysis of big data of grain storage and the early warning of grain storage temperature. In this paper, the selected LSTM is optimized and the early warning model of grain situation is established, and the analysis steps of the early warning model are given. In order to verify the availability of the improved LSTM network structure, RNN and three variants were used to predict the grain temperature under the same conditions, the prediction effect of the improved CLSTM is better.
Subject
Computational Mathematics,Computer Science Applications,General Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献