Log2Graph: A graph convolution neural network based method for insider threat detection

Author:

Fei Kexiong12,Zhou Jiang123,Su Lin1,Wang Weiping1,Chen Yong4

Affiliation:

1. Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

2. School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

3. Key Laboratory of Cyberspace Security Defense, Beijing, China

4. Department of Computer Science, Texas Tech University, Lubbock, USA

Abstract

With the advancement of network security equipment, insider threats gradually replace external threats and become a critical contributing factor for cluster security threats. When detecting and combating insider threats, existing methods often concentrate on users’ behavior and analyze logs recording their operations in an information system. Traditional sequence-based method considers temporal relationships for user actions, but cannot represent complex logical relationships well between various entities and different behaviors. Current machine learning-based approaches, such as graph-based methods, can establish connections among log entries but have limitations in terms of complexity and identifying malicious behavior of user’s inherent intention. In this paper, we propose Log2Graph, a novel insider threat detection method based on graph convolution neural network. To achieve efficient anomaly detection, Log2Graph first retrieves logs and corresponding features from log files through feature extraction. Specifically, we use an auxiliary feature of anomaly index to describe the relationship between entities, such as users and hosts, instead of establishing complex connections between them. Second, these logs and features are augmented through a combination of oversampling and downsampling, to prepare for the next-stage supervised learning process. Third, we use three elaborated rules to construct the graph of each user by connecting the logs according to chronological and logical relationships. At last, the dedicated built graph convolution neural network is used to detect insider threats. Our validation and extensive evaluation results confirm that Log2Graph can greatly improve the performance of insider threat detection compared to existing state-of-the-art methods.

Publisher

IOS Press

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3